
J .  Fluid Mech. (1988), wol. 190, p p .  491-512 

Printed in Great Britain 

49 1 

On vortex formation from a cylinder. 
Part 1. The initial instability 
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Vortex shedding from a circular cylinder is examined over a tenfold range of 
Reynolds number, 440 < Re < 5040. The shear layer separating from the cylinder 
shows, to varying degrees, an exponential variation of fluctuating kinetic energy 
with distance downstream of the cylinder. The characteristics of this unsteady shear 
layer are interpreted within the context of an absolute instability of the near wake. 
At the trailing-end of the cylinder, the fluctuation amplitude of the instability 
correlates well with previously measured values of mean base pressure. Moreover, 
this amplitude follows the visualized vortex formation length as Reynolds number 
varies. There is a drastic decrease in this near-wake fluctuation amplitude in the 
lower range of Reynolds number and a rapid increase a t  higher Reynolds number. 
These trends are addressed relative to the present, as well as previous, observations. 

1. Introduction 
Over a century ago, Strouhal(l878) observed vortex shedding from a cylinder, and 

demonstrated that its dimensionless frequency f U / U  remained constant over a range 
of Reynolds number. Subsequently, von Karman (1911) drew attention to the 
remarkably ordered vortex street that persists downstream of the cylinder and 
proposed a stability criterion for its existence. More recently, investigators have 
focussed on several features of bluff-body vortex shedding, providing valuable insight 
into aspects such as longitudinal and lateral spacing of vortices, vortex street drag, 
universal Strouhal numbers, and related phenomena. The investigations and reviews 
of Roshko (1954), Abernathy & Kronauer (1962), Morkovin (1964), Bearman (1967), 
Berger & Wille (1972), Griffin & Ramberg (1974), Gerrard (1978), Sarpkaya (1979), 
Saffman & Schatzman (1982) and Zdravkovich (1986) provide the reader with a rich 
panorama of insight. 

Regarding the process of large-scale vortex formation behind a bluff body in the 
subcritical Reynolds number regime, Gerrard (1966) and Wille (1974) describe the 
traditional viewpoint, which emphasizes the crucial role of negative base pressure. As 
shown in the simplified schematic of figure 1, the existence of the negative base 
pressure region (designated by the pressure coefficient Cp,) and the inward spiralling 
of the vorticity layer originally shed from the surface of the bluff body are mutually 
compatible. Formation of this vortex involves entrainment of the adjacent 
irrotational flow. At low and moderate values of Reynolds number, the process of 
vortex formation exhibits a number of additional complcxities, delineated in the 
foregoing references, most recently by Gerrard (1978). We consider them in the 
context of the present investigation. 

Interpretations of vortex street characteristics which embody the base pressure 



492 M .  P. Unal und D.  Rockwell 

(4 1.2 

1.1 

1 .o 

0.9 

0.8 

- CPb 

10' 102 103 104  

Re 

FIGURE 1. Characteristics of vortex shedding from a circular cylinder showing: (a )  schematic of 
near-wake region; ( b )  variation of vortex formation length ZJD as a function of Reynolds number 
Re; (c) variation of base pressure coefficient C,,with Reynolds number; and ( d )  Strouhal number 
A' as a function of Reynolds number. Cross-hatched regions represent approximate trends based on 
data  in Bloor & Cerrard (1966), Roshko & Fiszdon (1969). Gerrard (1978), and Rlevins (1977). 

coefficient CDb have been successful and useful for a number of years (Roshko 1954; 
Bearman 1967), typically for higher valucs of Reynolds numhcr than those of 
interest herein. In  general, however, we expect the magnitude of the negative base 
pressure Cpb to be related to  the strength of the vortices formed from the body and 
the length required to complete their formation, i.e. formation length I,. Figure 
1 (b ,  c) shows approximate data bands representing trends of I, and CPb with Reynolds 
number. The reader is referred to Roshko & Fiszdon (1969), Bloor & Gerrard (1966), 
Gerrard (1978), Rlevins (1977) and Zdravkovich (1986), as well as to flow 
visualization herein, for actual data and their interpretation and limitations. For all 
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parameters shown in figure 1, there is a degree of uncertainty associated with the 
character of the free-stream turbulence, cylinder aspect ratio and end effects, and 
related threc-dimensionality. Nevertheless, the trends of the time-averaged data of 
figure 1 suggest an interrelationship between the magnitude of the base pressure and 
the vortex formation length. 

Figures l ( b )  and 1(c)  imply that as the absolute value of the base pressure 
coefficient decreases, there is an increase in formation length. In figure l ( c ) ,  the 
sudden drop in absolute value of base pressure coefficient commencing a t  R e x  
150-200 may well be associated with the change in character of the vortex shedding 
to a ‘ high Reynolds number mode ’ between Re of about 250 and 500 as described by 
Gerrard (1966, 1978). According to Gerrard ( 1 9 7 ~  above Re of about 350, this mode 
is interrupted by onset of ‘transition waves ’ in the separating shear layer. Moreover, 
at Re greater than about 300, the vortices from the cylinder rapidly become 
turbulent ; correspondingly, there is an increase in vortex formation length. On the 
other hand, as the Reynolds number is increased above Re z 1800, the absolute 
valuc of the base pressure increases (figure 1 c )  and the transition waves in the shear 
layer downstream of the cylinder become particularly evident (Roshko & Fiszdon 
1969; Bloor 1964; Gerrard 1978; Wei & Smith 1986). 

With regard to examining the vortex development within the framework of linear 
stability theory, Nishioka & Sat0 (1978) have studied the disturbance development 
of the near wake over the Reynolds number range 70 ,< Re ,< 150. At sufficiently low 
Re, Re = 70, where the initial fluctuation level near separation is small, they 
interpret the disturbance growth as classical ‘linear growth ’, corresponding to 
exponential growth of substantial extent in amplitude of the disturbance. At higher 
values of Re = 120, 150, the initial fluctuation levcl is relatively large and the 
streamwise extent of the exponential growth region correspondingly smaller. In  fact, 
they suggest that a t  sufficiently high values of Re, the exponential growth region 
would cease to exist altogether. On the theoretical side, they showed that the linear 
theory of Nakaya (1976) effectively predicted the measured frequency of vortex 
formation up to Re = 120, despite the large fluctuation amplitudes near this upper 
limit of Re. 

I n  a general sense, truly ‘linear’ growth of a convective instability in a shear layer 
occurs up to d / U  of, a t  most, a few per cent, as noted by Ziada & Rockwell (1982), 
where d is the characteristic (r.m.s.) fluctuation amplitude and U the mean frce- 
stream velocity. Therein, they show that a t  high amplitudes, higher harmonics are 
typically present ; the growth rates of the fundamental and its higher harmonics are 
well-predicted by nonlinear theory. Even simple linear theory, however, provides a 
good approximation for the growth of the fundamental (predominant) disturbance 
amplitude up to relatively high values of d / U .  Regarding the initial fluctuation level 
of the disturbance, there are a variety of forced shear layer experiments (e.g. 
Freymuth 1966) demonstrating that the rate of exponential disturbance growth of 
the fundamental does not change significantly with the (forced) amplitude of thc 
disturbance at  separation. Therefore, even in cases where the initial level is high due 
to some sort of forcing, use of linear theory to describe the (albeit short) region of 
exponential growth of the convective instability may provide a reasonable 
approximation. In  unstable shear flows, one expects the upstream influence from the 
downstream vorticity dynamics to ‘force’ the separation region of the cylinder; 
consequently, the initial fluctuation level in the near-separation region should 
depend, to some degree, upon the coherence and strength of the downstream 
vortices. If this upstream influence is sufficiently strong, we expect compatibility 



494 M .  P. 1Jnal and D. Rockwell 

between the eventually formed vortex pattern and the initial region of disturbance 
amplification. 

A particularly important feature of near-wake flows is the possible existence of an 
absolute, as opposed to a convective, instability (Huerre & Monkewitz 1985). When 
there exists a region of absolute instability in the flow, one must consider both 
downstream and upstream waves ; in concept, existence of this instability can 
provide a powerful source of upstream influence, which can lead to a self-sustained 
feedback loop. In a related study of a geophysical flow, Pierrehumbert (1984) asserts 
that  the flow is dominated by the resonance between downstream and upstream 
instability waves having the largest absolute growth rate. Koch (1985), in his 
investigation of wake flows, suggests that  there is a location in the near wake at 
which instability waves are reflected upstream. The resonance then involves wave 
reflection from this location and, for example. an upstream solid boundary. In  a 
recent analysis of the cylinder wake, Triantafyllou, Triantafyllou & Chryssostomidis 
(1986) u6e the concepts of absolute instability to predict the frequency of the vortex 
street at two extreme values of Reynolds number. 

Monkewitz & Nguyen (1986) classify possible regions of absolute and convective 
instability in typical flows, and asscss the validity of the foregoing resonance models 
within this framework. Moreover, they impose their own resonance condition, which 
they term the ‘initial resonance criterion’. the oscillation of the near-wake is 
controlled by the first self-sustained resonance that the flow encounters. It is 
important that their interpretation accommodates the possibility of an initially 
convective instability immediately downstream of separation, when the shear layer 
is sufficiently thin. 

The purpose of the present investigation is t o  describe certain features of the 
disturbance growth in the initial region of the separation shear layer, as yet 
unexplored above Rr = 150. I n  this context, one may raise the issue of whether there 
is a region of exponential disturbance variation downstream of the body at these 
higher values of Re, and how it relates to the concept of an absolute instability. 
Moreover, on thc basis of the foregoing discussion in association with figure 1 .  one 
intuitively expects that  thc disturbance fluctuation level in the region near 
separation of the shear layer will vary substantially due to different amplitudes of 
upstream influence. This variation in initial fluctuation level has not been addressed. 
All of these features arc related to the formation of the large-scale (major) vortices 
from the cylinder and provide, in themselves, interesting challenges. However, at 
higher Reynolds numbers, vortex development occurs at two different scales. There 
is onset of srnall-scale instability waves a t  higher frequency f B G  ; they are often called 
‘transition waves ’ (Gerrard 1978). Their coexistence with the large-scale vortices at 
f, must be addressed for a full resolution of the shedding process from circular 
cylinders. In  the following we attempt to clarify certain aspects of these issues. 

2. Experimental system and instrumentation 
Experiments were carried out in a free-surface water channel having a test section 

30.5 cm wide by 45.7 cm deep (figure 2). In  order to minimize endwali effects, 
cylinders were mounted within a 24.0 cm wide by 122.0 cm long test-section insert, 
which clipped off the wall boundary layers of the approach flow. To facilitate flow 
visualization, both the test section and test-section insert were constructed of 
Plexiglas. The impingement wedge and its carrier shown in figure 2 were employed 
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FIGURE 2. Schematic of experimental system. 

only in the study described in Part 2; they were removed for the present 
investigation. 

In  experiments of this sort involving self-sustained oscillations, parasitic effects of 
the free surface can arise in the event that one of the free-surface modes of the test 
section is tuned to the self-generated wake instability of the cylinder. Features of 
such a coupled resonance have been characterized by Ziada & Rockwell (1983). In  
order to ensure that such effects were not present in this investigation, a 40.6 cm long 
cover plate was mounted a t  the free surface as shown in figure 2 .  It is also necessary 
to ensure that the free-stream fluctuation level is minimal, in order to determine the 
sensitivity of the near-wake region to the upstream influence of the wake-edge 
interaction. This was accomplished by conditioning the upstream region of the flow 
in such a manner that the characteristic free-stream velocity fluctuation Q, relative 
to the free-stream velocity U ,  was less than 6 x Moreover, measurements of ii 
in regions away from the cylinder wake instability exhibited an exponential decrease 
in amplitude as the free stream was approached, thereby indicating absence of free- 
surface effects. 

To cover the range of Reynolds number under consideration, the cylinders had 
diameters of 0.48,0.64,1.28,1.91 and 2.48 cm. These cylinder diameters corresponded 
to  length to diameter ratios of 50.0, 37.5, 18.8, 12.6 and 9.7. During the course of the 
experiment, disturbance variations were compared for different values of cylinder 
length to diameter ratios, to ensure that this parameter did not influence the 
quantitative growth-rate values. Moreover, in the extreme case of cylinder length to  
diameter ratio of 9.7, extensive spectra were taken in the spanwise direction to 
determine the invariance of the time-averaged spectral amplitudes of the large- and 
small-scale instabilities from the cylinder. In  this extreme case, it was found that the 
central 85% of the flow had essentially the same spectral characteristics, used in 
constructing the disturbance growth rates. The persistence of consistent patterns of 
vortex formation for the range of cylinder scale and aspect ratio employed herein is 
quantified subsequently. 

The velocity measurements were carried out using a Disa hot-film probe (55Rll)  
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in conjunction with a Disa anemometer (55D01) and linearizer (55D10). The position 
of the probe was controlled by a traversing mechanism operated using a stepping 
motor interfaced with a DEC-MINC or 11-23 minicomputer. The stepping motor 
provided resolutions in probe displacement in the cross-stream and streamwise 
directions of 0.91 mm and 1.06 mm respectively. Spectral analysis of the velocity 
signals was carried out using a fast Fourier transform (FFT).  In order to optimize the 
statistical validity of the spectral amplitudes, up to 15 spectra were averaged at each 
location. Based on the number of points sampled (from 1024 to 2048), this 
corresponds to approximately 300 cycles of the large-scale shedding frequency of 
interest herein. 

Pressure measurements were made (in the investigation described in Part 2) with 
a Kulite XCS-190-2D pressure transducer. The leading edge of the impingement 
plate allowed measurement of the pressure fluctuations on the upper and the lower 
surface of the edge a t  a location near the tip of the edgc, x' = 0.1 cm, where ,x' is 
distance downstream of the tip of the leading edge. These surface pressure taps were 
connected via channels to a Plcxiglas valve in which the pressure transducer was 
mounted (figure 2). Frequency-response tests show that amplitude and phase 
distortion due to the finite volume between the sensing surface of the transducer and 
the pressure tap in the surface of the edge was negligibly small. i.e. 4 %  and 1.6" a t  
the highest frequency of interest. 

As a complement to the foregoing measurements, visualization was carried out 
using hydrogen-bubble and dye-injection techniques. The hydrogen-bubble tech- 
nique involved a vertical platinum wire (25 pm in thickness) mounted in a vertical 
probe holder ; a pulsating voltage applied to  the wire provided timelines of desired 
frequency and pulse width. Illumination of the hydrogen-bubble wires involved use 
of a pair of 90 W stroboscopic lights (Instrobe 90) having a flash duration of 10 ps 
and operating at a frequency of 120 Hz. In order to  optimize the bubble contrast, the 
vertical wall of the channel directly behind the region of interest was covered by a 
sheet of flat black construction paper. I n  the case of dye injection, lighting was from 
the far side of the test section through a sheet of white, translucent plastic that 
effectively diffused the light from the two (1000 W) constant-intensity sources. 

Visualization was recorded on the Instar television system. This system has 
vertical and horizontal sweep frequencies of 120 Hz and 25.2 kHz, a resolution of 250 
lines, and a framing rate of 120 frames per second. Photos were obtained by 
photographing the image on the video screen using a 35 mm Nikon F-3 camera. 

3. Visualization of flow regimes 
Figure 3 shows flow visualization of the vortex development within the range of 

Reynolds number examined herein. The hydrogen-bubble wire was located near the 
upstream stagnation point of the cylinder, and pulsed bubbles were generated to 
provide timeline markers. Figure 3 ( a )  shows that as the Reynolds number increases 
from 270 to 1360, the vortex formation length increases. (This formation length is 
defined as the distance downstream of the cylinder a t  which irrotational fluid is 
drawn across the centreline. It is not necessarily the same as the traditional I, shown 
in figure 1 . )  The trend of increasing formation length in figure 3(a) corresponds to 
a decrease in magnitude of negative base pressure coefficient (see figure l c ) ,  
summarized by Roshko & Fiszdon (1969). I n  figure 3 ( b ) ,  an increase of the Reynolds 
number from 1900 to 5040 shows that the formation length decreases; this trend 
corresponds to an increase in negative base pressure coefficient (also see figure 1 c and 
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FIGURE 3. (a )  Variation of near-wake structure in lower Reynolds-number range where absolute 
value of base pressure coefficient decreases with increasing Reynolds number. (b )  Near-wake 
structure over Reynolds-numher range where absolute value of base pressure coefficient shows an 
increase with increasing Reynolds number. (c) Wake structure downstream of initial vortex 
formation showing increase of vortex formation length and narrowing of near wake with increase 
of Reynolds number. 
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Roshko & Piszdon 1969). These observations are linked to  an increase in rate of 
growth of the separating shear layer. At Re = 3400 and 5040 the streamwise 
gradients of shear-layer momentum thickness 0 were measured to be dO/dx = 0.028 
and 0.045 respectively. Enhanced entrainment of the shear layer and increased 
magnitude of negative base pressure are apparently interdependent phenomena. 

At Reynolds numbers of about 1900 and above, small-scale instabilities (hereafter 
referred to as Bloor-Gerrard instabilities) are evident ; they become particularly 
pronounced a t  Re = 3400 and 5040. We note that location of the bubble wire at the 
downstream side of the cylinder provides little information beyond that shown in 
figures 3(a) and 3(6) (A. Ongoren & D. Rockwell, unpublished work, 1986). Onset of 
Bloor-Gerrard instabilities is not apparent for Re < 1900. Moreover, corresponding 
velocity spectra showed existence of the frequency component corresponding to the 
small-scale instability only for Re above about 1900. 

I n  figure 3(c), covering the lower Reynolds-number range, an increase in Reynolds 
number appears to narrow the cross-stream extent of the downstream region of the 
wake and decrease the scale of the downstream vortices, evident from comparison of 
the right-hand region of photos of Re=270 and 600. This change in the wake 
structure is associated with onset of pronounced three-dimensionality in the 
downstream domain of the wake (A. Ongoren & D. Rockwell, unpublished work, 
1986). In  fact, the increase in vortex formation length evident in figures 3 (a )  and 3 (c) 
is compatible with the onset of this three-dimensionality. It may substantially 
reduce the upstream influence of the quasi-two-dimensional vortex, thereby 
decreasing the initial fluctuation level near separation. Competition between 
symmetrical and antisymmetrical modes of the wake instability does not appear to 
play a role; cross-spectra using hot-film probes on either side of the near wake 
showed a consistent difference of rc. 

Unal(l985) discusses possible deviations from the antisymmetrical mode of vortex 
formation shown in figure 3 (a+). At certain values of Re and cylinder aspect ratio, 
it  was possible to induce an  intermittent, but relatively infrequent, appearance of a 
symmetrical mode of vortex formation. For all quantitative studies described herein, 
however, the antisymmetrical mode was found to persist over a minimum of 92 YO of 
the oscillation cycles. 

4. Fluctuation level at trailing-end of cylinder as a function of Reynolds 
number 

The initial fluctuation level a t  or near shear-layer separation is important in 
identifying whether the initial growth of the disturbance is truly linear or nonlinear, 
as discussed in Sj 1 .  I n  characterizing this initial level, i t  is most appropriate to select 
a location very near or a t  shear-layer separation. Herein, we select a reference 
fluctuation level a t  a fixed reference location downstream of shear-layer separation ; 
its location accounts for the fact that the onset of separation is Reynolds-number 
dependent and that accurate measurements near the surface of the cylinder are 
difficult. (For values of fluctuation level measured near separation, the reader is 
referred to  subsequent figures.) 

To describe this reference fluctuation level, we select transverse (y) locations a t  
the edge of and within the separated shear layer and a streamwise location (x) a t  the 
trailing-end of the cylinder, x / D  = 0.5, where x is measured from the centre of the 
cylinder. Regarding the transverse location of the reference station, the eigenfunction 
G(y) of the unstable shear layer shows strong transverse gradients of fluctuation 
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FIGURE 4. Variation with Reynolds number Re of mean base pressure coefficient Cpb and velocity 
fluctuation amplitudes measured at edge of (G,/U,) and at  maximum amplitude location within 
(Cm/U,) the shear layer at x / D  = 0.5. Also shown are visualizations of the near-wake structure from 
dye injection in the base region. Base pressure line is from Roshko & Fiszdon (1969). 

amplitude; i t  is customary to employ either the maximum fluctuation amplitude 
timax z tirn, the value of fluctuation amplitude 6, a t  the edge of the shear layer where 
U = U ,  (see figure 4), or the integrated kinetic energy across the shear layer E,. For 
the present characterization, we employ the first two parameters, as defined in figure 4. 
Within the Reynolds-number range considered herein, the momentum thickness 
0 of the separating shear layer is the order of a few per cent of the cylinder diameter 
D. (This momentum thickness is evaluated in the traditional fashion (Freymuth 
1966).) Consequently, in the schematic of figure 4, the thickness of the shear layer is 
exaggerated relative to the diameter of the cylinder. 

The variations of mean base pressure coefficient C with Reynolds number Re of 
figure 1 is reproduced in figure 4; it is compared with reference fluctuation levels 
tZm/Ue and tZ,/U,. Both of these fluctuation levels generally follow the trend of the 
absolute value of base pressure coefficient. Moreover, these levels are inversely 
related to the visualized vortex formation length, evident in the visualization of 
figure 3 (a-c). 

I;)b 

5. Streamwise variation of disturbance amplitude 
I n  determining the amplitude variation of the disturbance in the separating shear 

layer, one may track the amplitude of the maximum fluctuation 3,, the fluctuation 
amplitude a t  the edge of the shear layer tie, 01 the integrated kinetic energy across 
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the shear layer E,. These parameters are illustrated in the inset of figure 5. Moreover. 
the mean velocity U(y), its value U ,  at the edge of the shear layer and the locaal 
momentum thickness 6 of thc shear layer are indicated therein. 

Figure 5(a)  shows the variation of normalized fluctuation amplitude C,/(Ce)o a t  the 
edge of the shear layer as a function of absolute distance x for extreme values of 
Reynolds number Re and diameter D ;  (QJ0 is the value extrapolated to x = 0. In  
terms of the absolute streamwise distance x, the disturbance amplitude varies 
substantially with D ;  however, in all cases, there is a well-defined exponential 
variation. 

Figure 5 ( b )  demonstrates the equivalence betwecn fluctuation level a t  the edge of 
the shear layer C,/U, and the square root of the integrated kinetic energy 

in interpreting the amplitude variation. In  doing so, we employ the characteristic 
momentum thickness ern a t  the middle of the exponential growth region. It is evident 
from figure 5 ( b )  that over the sevenfold range of Reynolds number considered herein, 
the streamwise amplitude variation is essentially the same, a t  a given Re, whether 
one employs the concept of integrated kinetic energy EZ or a fluctuation a t  the edge 
of the shear layer 4,. 

In  figure 5 ( c ) ,  the disturbance amplitude variation is shown for a total of six 
Reynolds numbers and varying initial fluctuation level. Over this Reynolds-number 
range, the slopes of the curves deviate by about 15 YO from the mean value, while the 
initial fluctuation level changes by about a factor of three. In  figure 5 ( d ) ,  the velocity 
amplitude 6, and integrated kinetic energy E: are normalized with respect to their 
initial values. The primary cause of the deviations in amplitude variation is most 
likely to be due to the fact that  these variations are correlated with a single 
lengthscale %,, which is strictly appropriate only for a parallel flow. 

6. Small-scale disturbances in unstable shear layer 
Extensive spectra of 12 taken within the shear layer over a range of streamwisc 

locations show that, in general, there are two predominant spectral components : 
that corresponding to the primary vortex shedding frequency f, described in the 
foregoing ; and that of a smaller-scale instability, often referred to  in the literature as a 
'transition wave ', which we designate as the Bloor-Gerrard frequency f B G  (Bloor 
1964; Gerrard 1978). At arbitrary locations in the shear layer, Bloor (1964) and Wei 
& Smith (1986) have found fBG/fv GC (Re)', where k = 0.5 and 0.87 respectively. As 
shown by U n a l ( 1 9 8 ~  the characteristic thickness of the unstable shear layer does not 
follow that expected from laminar considerations, i.e. 6, K l /Rei ,  so we do not expect 

FIGURE 5. (a) Variation of velocity fluctuation at edge of shear layer Ce/(Ce)" for various cylinders 
of diameter D ;  and ( b )  variation of velocity fluctuation amplitude at edge of shear layer C,/U, and 
integrated kinetic energy parameter E2 as a function of downstream distance x/8,, with 
momentum thickness 8 at middle of exponential growth region used as a normalizing length. (c) 
Amplitude variation of fluctuation amplitude at edge of shear layer CJJe as a function of Reynolds 
number Re; (d )  variation of normalized amplitude of fluctuation at edge of shear layer Ce/(CJo and 
integrated kinetic energy parameter E:/(IC:)o for a range of Reynolds number as  a function of 
streamwise distance x/O, where Om is momentum thickness at middle of each respective 
exponential growth region. 
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fUG to scale according to a laminar shear-layer thickness over the range of Re 
considered herein. 

In  this investigation, below Re = 1900. only the component fv was detectable; 
above this value, both f ,  and fBG were present, with contributions from f, extending 
over the entire streamwise extent of the shear layer, and contributions from fBG being 
detectable over a limited streamwise extent. I n  general, this high- frequency 
component fBG is more difficult to quantify, a feature most likely to be connected to 
rapid onset of small-scale spanwise instabilities of the shear layer (Gerrard 1978; Wei 
& Smith 1986). 

Figure 6 shows a typical family of frequency spectra of C, with prcdominant 
spectral components a t  f, and fuc, taken across the shear layer a t  a streamwise 
station shortly downstream of shear-layer separation. At this station, the energy 
level E,* of the high-frequency instability (at fBG) is maximum. These spectra 
emphasize that the relative amplitudes of the components a t  f, and fnG are a strong 
function of transverse (y) location within the shear layer, the component a t  f, 
dominating in the lower part and that a t  fBG in the upper part. Also evident in figure 6 
are other frequency components corresponding to higher harmonics of fv ,  i.e. 2fv 
and 3f,, as well as components arising from nonlinear interaction between f,, and 
fBG, i.e. fnG + f ,  and f B G  - fv .  It is important that  in these spectra, as well as in those 
acquired further upstream and downstream, there occurs no pronounced sub- 
harmonic(s) of the small-scale instability fBG. This observation is in contrast to what 
is expected from free mixing-layer studies (Roshko 1976), where successive vortex 
pairing of small-scale instabilities gives rise to  large-scale instabilities. In  this 
respect, the developing shear layer of the cylinder near wake is distinctly different 
from a free mixing layer. Visualization suggests that the fBG vortices simply form a 
frill upon the large-scale f ,  vortex. However, in the event that the large-scale vortex 
formation in the cylinder wake is artificially suppressed by insertion of a splitter plate 
(Unal 1985), successive vortex pairing and corresponding generation of subharmonic 
components does occur. 

Figure 7 shows amplitude variations corresponding to the maximum fluctuation 
level C,/U, within the shear layer and the dimensionless square root of the kinetic 
energy EZ, both a t  the frequency of large-scale vortex shedding f,. I n  addition, the 
kinetic energies EZ for the component fUG are also given. At Re = 750, there is no 
detectable small-scale instability a t  fBc. In  this case, the amplitude of the maximum 
fluctuation within the shear layer follows that of the square root of the integrated 
energy. At higher values of Re = 3400 and 5040, there is distortion of the variation 
of the maximum amplitude of the fluctuation component S ,  relative to the 
exponential variation of energy EB a t  frequency f ,  (Unal & Rockwell 1984). This 
distortion occurs over streamwise distanoes for which there are detectably large 
amplitudes of the high-frequency instability component f s G ,  Comparing with the 
visualization of figure 3 ( b )  at Re = 3400 and 5040, there is clearly an interrelationship 
between the large-scale vortex-formation length therein and initial fluctuation levels 
[%JUelx/o,=n and [EZlxlo,=,, : formation length decreases and initial fluctuation 
level increases. In fact, artificial suppression of the development of the downstream 
vortex street via a splitter plate drastically decreases the initial fluctuation level 
(Unal & Rockwell 1987). 
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FIGURE 6. Spectra of velocity fluctuation amplitude taken across shear layer a t  x / D  = 1.25 and 
Re = 5040. The primary, large-scale vortex shedding frequency isf, and the small-scale instability 
frequency is f B G .  

7. Disturbance amplification rates 

the amplification rate - k ,  in accord with 
From the regions of exponential disturbance growth of figure 5 ,  one may determine 

- ki = - k;  y0.5 = 1n (c/c0)/(dyo.& 

in which yo,5(x) is the distance from the wake centreline to the half velocity (V = 
O.5Ue) of the wake and do is the characteristic velocity fluctuation amplitude a t  
x = 0. Data for three values of Reynolds number Re = 750, 3400, 5040 are shown in 
figure 8 ( b d )  as solid symbols. 

We compare these data with spatial stability calculations of P. Monkewitz (private 
communication, 1986). In the plane of amplification factor - ki versus vorticity- 
thickness 8, parameter N - l ,  where N-l z 8, sinh-l i / ( d 2 ~ ~ , ~ ) ,  there are, due to the 
absolute nature of the instability, two families of theoretical curves (figure 8 a )  in 
accord with the existence of downstream and upstream modes. Each curve has been 
computed for a constant value of real frequency w = 27~fy,,~/(~U,). 
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FIG~JKE 8. Comparison of experimental (closed symbols) and theoretical (open symbols) growth 
rates - k ,  z's. dimensionless vorticity thickness of shear layer AV-l with frequency w as 
parameter. Theoretical curves calculated by P. hlonkewitz (privat'e communication, 1986). 

The experimental data, given by the solid symbols in figure 8 ( b - d ) ,  oorrespond to 
a wide range of dimensionless vorticity thickness 0.046 < N-l  < 0.30 ; these data fall 
within the frequency range 1.5 < w < 1.8. At each experimental value of N-* and w, 
we determine, from figure 8 ( a ) ,  the theoretical values of amplification factor - I c ,  
corresponding to the two instability modes, These theoretical values are indicated by 
thc open symbols in figure S ( b 4 ) .  At all values of Reynolds number, the trend of 
- k ,  'us. N-' i s  best approximated by the lower set of theoretical pointa, believed to 
correspond to the downstream mode. Wc emphasize, however, that  the distinctian 
between upstream and downstream modes is not clearcut in an absolutely unstable 
flow. 

Figure 9 further compares the data of figure 8 on the - k ,  us. w plane with N 
as a parameter. Calculations are for N = 2 ,6 ,10 ;  note that the data correspond to 
N > 3.3 (see figure 8). As expected from figure 8, the calculations approximate well 
to the data trend. 

Most important, however, is the correspondence between the range of w covered 
by the data and that by vertical arrows. These arrows represent the frequencies (for 
the values of N = 2.5 , lO)  a t  which local self-sustained resonances are possible in 
the wake. The spread of the data over a finite range of w is due, of course, to the 
variations of yo 5(x )  over the streamwise extent of the exponential growth region. 
Since the stability analysis is bascd on parallel flow concepts, choice of the most 
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FIGURE 9. Comparison of -12, 0s. w for three values of S = 2. 5. 10.  Arrows denote branch 
point frequencies at these values of w from calculations of Monkewitz & Nguyen (1986). 

representative yo5 is somewhat subjective, and must be made with care. For this 
reason, we show in figure 9 the entire span of data of figure 8, rather than attempting 
to match most favourably with theory. 

Considering the overall plot of figure 9, we note that the curve corresponding to 
N = 10 is very similar to that of N = CO. It represents, in essence, the lower portion 
of the spatial stability curve for a single shear layer (Michalke 1965), and its 
maximum amplification rate occurs a t  w z 5.1 (Monkewitz & Nguyen 1986). At 
successively lower values of N ,  i.e. N = 5 and 2, the value of w at  which maximum 
amplification occurs moves to substantially lower values. Thus, on the basis of 
maximum disturbance amplification, one would expect the wake oscillation 
frequency to vary substantially with the thickness of the separating shear layer, i.e. 
with N - l .  However. the clustering of the data close to the branch point frequencies 
(arrows of figure 9) clearly suggests that the controlling mechanism of the wake 
oscillation is a resonance of the type postulated by Betchov & Criminale (1966), Koch 
(1985), and Monkewitz & Nguyen (1986). 

Comparison of theoretical and experimental mean velocity profiles and eigen- 
functions is given in figure 10. Data correspond to the middle of the exponential 
growth region at each value of Reynolds number. This corresponds, over the range 
of Re, to 1.0 < x / D  < 1.4, 1.65 < w < 1.69, 5.8 < N < 7.0. The mean velocity 
distributions are compared to  the functional form 

V/Cr, = 1 - [i + sinh'" (y/yo sinh-l O.g734)]-l, 

for N = 6.4. Regarding the eigenfunction 6 /6 ,  comparison, all data are compared 
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with theoretical distributions of the downstream mode of N = 5.8 and 7.0. Although 
the general form of the data follows that of the theory, there are large deviations at 
the extreme values of Re  = 750 and 5040. 

The agreement of the data with the theoretical eigenfunction of the upstream 
mode (not shown here) is less favourable. There occurs a minimum of S/S, at  about 
(y--yo,s)/y,,5 -0.19, followed by a rise to another (smaller) maximum amplitude at  
larger negative y,  i.e. a t  (y-yo.5)/yo,5 x -0.35. 

8. Concluding remarks 
For the range of Reynolds number considered herein, the flow structure behind the 

cylinder undergoes a drastic alteration as it passes from a quasi-laminar instability 
to one in which there are two distinctly different scales of instability. The variations 
in base pressure, vortex strength, and formation length with Reynolds number are 
substantial, as revealed in a number of previous investigations. In  this investigation, 
we have attempted to interpret these traditional parameters within the context of 
unstable shear layers from the cylinder. 

I i  I'",JI I!)O 
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In  the event that  the separating shear layer supports a purely convective 
instability, one may view the initial fluctuation level (near separation) to be a direct 
function of the upstream-induced velocity/pressure fields. In  general, via Biot- 
Savart induction, the largest initial fluctuation levels would be associated with the 
smallest values of vortex-formation length. The importance of accounting for 
upstream influence is also emphasized by Michalke (1984) in his assessment of jet 
instabilities. As discussed therein, the self-excited frequency of a jet instability is 
substantially lower than that predicted by spatial theory. Aside from the possible 
influence of non-parallel cffects. Michalke suggests that  the downstream vorticity 
dynamics may control the preferred frequency. Considering the area integral of the 
fluctuating vorticity (centred at a distance xo from the separation edge) to evaluate 
the circulation r over a disturbance wavelength A ,  the magnitude of the upstream 
induced velocity is proportional to I r l / A U ,  and, where U ,  is the stream velocity at 
the edge of the layer, has a maximum at a frequency close to that of the most 
amplified disturbance from experiments, but substantially lower than that of the 
most amplified from spatial theory. Accordingly, we would expect compatibility 
between the most amplified disturbance in the shear layer from the cylinder and the 
downstream vorticity dynamics. 

However, there is another type of upstream influence that may potentially exert 
a strong, if not the controlling, influence : upstream wave motion due to the existence 
of an absolute instability in the near wake (Koch 1985; Monkewitz & Nguyen 1986). 
Interpretation of experimental data on disturbance growth rates and eigenfunctions 
within the framework of absolute instability is complicated on several fronts. First 
of all, both upstream and downstream modes exist. It is necessary to know the 
relative amplitudes of these modes in comparing experiment with theory ; in certain 
situations, however, it may be possible to demonstrate that  one of these modes 
dominates. Second, the relative amplitude of modes will be a function of streamwise 
distance along the shear layer. This feature, along with the usual assumptions in 
applying parallel stability theory to non-parallel flows (Ho & Huerre 1984), 
complicates the interpretation. Finally, there is the issue of whether i t  is most 
appropriate to analyse the absolute instability using real frequency w as done 
herein; or complex frequency w = w,+iw, ,  accommodating a global growth rate w, 
(P. Monkewitz private communication, 1986). 

We emphasize that the fluctuation levels of the instability near separation are, 
over certain ranges of Reynolds number, very large. Indeed, this fluctuation level 
takes on values much higher than those typically achieved in purely hydrodynamic 
oscillations of jets and mixing layers where no acoustic resonance or fluid-elastic 
effects come into play (Rockwell 1983). The issue remains as to  the relative 
predominance of upstream influence through : Biot-Savart induction ; and upstream 
influence from the region of absolute instability. 

Moreover, we emphasize another class of approximations that has been employed 
in comparing experiment with theory. In  a rigorous sense, one must account for the 
nonlinear character of the disturbance. Nonlinearity is evident in the relatively high 
fluctuation levels a t  separation (figures 4 and 7) .  Furthermore, the non-parallelism 
of the mean shear layer, evidenced by O(x), arises from the Reynolds stresses, which 
in turn are a higher-order product of the velocity perturbation, requiring 
accommodation of nonlinearity. An additional complication arises from the 
simultaneous existence of large-scale ( f , )  and smaller-scale ( fBG)  components. In the 
spirit of unstable wave growth in fully turbulent flows (Wygnanski & Pctersen 1985), 
we may view the growth of the wave at f ,  in presence of the fBG instability (which 
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may be three-dimensional) as a degenerate case of organized wave growth in a 
turbulent flow. In fact, as noted by Wygnanski & Petersen (1985), the small-scale 
motions do not exert a substantial influence on the macroscale dynamics of the flow. 
In essence, we view the growth of the smaller-scale instabilities at fBG,  as well as that 
at  f,, as contributing to the thickening of the mean shear layer, i.e. O(x). This 
thickened shear layer, however, then serves as the base mean flow for a quasi-linear 
description of the disturbance development at f,, again following the principles of 
organized wave growth in turbulent flow. 

In the foregoing we have addressed the nature of the instability leading to the 
classical, Karman vortex street. As noted herein, as well as in a number of previous 
studies, small-scale Bloor-Gerrard vortices can exist in the separating shear layer a t  
sufficiently high Reynolds number. Particularly remarkable is the fact that  there is 
no evidence of successive coalescence of the Bloor-Gerrard vortices at fBG. In the 
corresponding free jet or mixing layer, one observes successive pairing of 
neighbouring vortices to produce large-scale structures in downstream regions of the 
flow (Roshko 1976). A relevant case for comparison involves the transition of an 
axisymmetric jet, which involves two distinct instability modes, one associated with 
the small-scale thin shcar-layer instability and the other associated with a large-scale 
stability of the jet (Kibens 1980). As demonstrated by Kibens, successive pairing of 
small-scale vortices leads to large-scale vortices compatible with a column-type 
instability mode. In contrast, extensive spectra taken throughout the two-scale 
mixing layer herein shows no evidence of successive subharmonics of the 
Bloor-Gerrard frequency ; this quantitative result, along with flow visualization 
suggests that the small-scale vortices form a frill upon large-scale vortices. I n  fact, 
one may make the interesting observation that as Reynolds number increases the 
initial fluctuation level near the upstream separation increases as well. 

It is well known, from previous experiments on jets (Rockwell 1972) and mixing 
layers (Ho 1981) subjected to relatively high amplitude initial disturbance levels, 
that  successive vortex pairing does not occur, but instead there is ‘forced fusion’ 
(Rockwell 1972) or ‘collective coalescence ’ (Ho 1981). This phenomenon appears to 
be most analogous to that occurring in the two-scale mixing layer herein. That is, as 
the number of Bloor-Gerrard vortices increases, the initial excitation level increases 
as well. This ensures that the small-scale vorticcs coalesce together during formation 
of the largc-scale vortex. 

Another feature of the unstable shear layer that  distinguishes I t  from its classical 
counterpart is dominance of the fluctuating kinetic-energy a t  the large-scale vortex- 
formation frequency f, over that  at the small-scale frequency fsc. This dominance 
persists from separation onwards. In accord with the aforementioned lack of 
detection of subharmonics of fBG, there is not successive energy transfer from smaller 
to larger scales as the shear layer evolves in the streamwise direction. We suggest 
that  this dominance of energy at f v  is due to pronounced upstream influence from 
Biot-Savart induction, existence of an absolute instability, or a combination of 
them. 

‘Transition waves’were not observed for Re < 1900, in contrast to Gerrard (1978), 
who observed them to extend well below this value. Among the factors that  could 
influence the initial fluctuation level and growth of these waves are the background 
noise of the facility in the spectral range of the instability wave, the cylinder aspect 
ratio, and the nature of cylinder end conditions. Concerning aspect ratio effects, we 
note that Gerrard’s (1978) observations of the well-defined symmetric mode at Re = 
1968 were apparently at a cylinder aspect ratio L J D  = 14. As shown by Unal(1985), 

Ii 2 
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decreasing the cylinder aspect ratio a t  Me = 1360 (corresponding to the minimum in 
the base pressure curve) to L J D  = 12.6 does in fact substantially increase the 
fraction of time that the symmetric mode is present. 

There is insufficient evidence to generalize the occurrence or non-occurrence of the 
symmetric mode as a function of cylinder aspect ratio. Clearly, this aspect is worthy 
of further study. In  this regard, i t  should be pointed out that the effects of cylinder 
end conditions on the wake dynamics are not well understood. Although one might 
view a larger cylinder aspect ratio as promoting greater three-dimensionality, the 
study of Graham (1969) a t  Re of the order of lo4 shows that the end plates on a D- 
shaped cylinder produce two-dimensional shedding only if the distance between the 
plates is less than or equal to four cylinder widths, a distance most likely associated 
with the spanwise scale of the ‘cells ’ that would exist on an infinitely long cylinder. 
Zdravkovich (1986) provides a review of extensive data on spanwisc> correlation 
length in the downstream wake> over a rangc of Reynolds numbrr Of course. in 
general, one expects these correlations to  be a function of streamu ise distance and 
transverse location in the shear-layer. Gcrich & Eckelmann (1982) assess a rang’ of 
studies confronting the subtleties of end effects and carry out experiments a t  very 
low Re demonstrating existence of two shedding frequencies. one in the core region 
and another near the endwall/plate wall, the former being about 10-15 %) less than 
the latter. From the foregoing, as well as our own experience, we believe the cylinder 
aspect ratio is not simply a geometrical effect. The length scales L, and D should be 
considered in relation to the wavelength of the large-scale shedding of A ,  and that of 
the Bloor-Gerrard instability no,. 

I n  the present investigation, it is the antisymmetrical mode of the large-scale 
vortex formation that dominates; therefore, all of the quantitative data is an 
accurate reflection of the wake dynamics in this limiting case. In  the event that i t  is 
possible to induce a persistent symmetrical mode, a t  the expense of attenuation of 
the antisymmetrical mode, i t  may well be possible for coalescence of the adjacent 
small-scale Bloor-Gerrard vortices to occur. I n  this case, it is possible that the 
fluctuating energy of the large-scale vortex shedding would not dominate from 
separation onwards as demonstrated herein. In  fact, as discussed by Unal (1985) and 
Unal & Rockwell (1987), suppression of the antisymmetrical mode of the large-scale 
vortex formation by a splitter plate shows a decrease in initial fluctuation level a t  
f, and well-defined vortex coalescence of the vortices atf,, ; shear-layer spectra cxhi bit 
a clear subharmonic of fBG in contrast to the free, non-attenuated wake where the 
antisymmetrical mode of the large-scale vortices a t  f, dominates. 
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